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A novel approach for predicting magnetic hysteresis loops and losses in ferromagnetic laminations under mechanical stress is 

presented. The model is based on combining an energy-based anhysteretic magnetoelastic constitutive law to a vector Jiles-Atherton 
hysteresis model.  The hysteresis loops and losses are modeled accurately for stresses ranging from -50 to 80 MPa. 
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I. INTRODUCTION 

EPENDENCY of iron losses on mechanical stresses and 
strains remains a problem in accurate design and analysis 

of electrical machines. The increase of power losses due to 
mechanical processing of the core laminations [1] is generally 
associated to the deformations and residual stresses caused by 
the process. In addition, temperature gradients and centrifugal 
forces give rise to additional mechanical loadings in the cores. 

Different approaches for both theoretical [2]-[3] and 
experimental [4]-[5] formulations for coupled multiaxial 
magnetomechanical field problems have been presented quite 
recently. However, modeling of the losses has received less 
attention, and the presented loss models have typically been 
based on large amounts of experimental data. For example in 
[1] and [5], measured iron-loss and magnetization curves were 
used in finite-element (FE) analysis to study the effects of 
shrink-fitting and punching in electrical machine stator cores. 

In [6], an interesting approach was taken to couple the 
single-valued constitutive law of [3] to the vector Jiles-
Atherton (J-A) hysteresis model. In this paper, we implement 
a somewhat similar extension for the model of [2]. The model 
gives promising results when initially fitted to measurements 
under unidirectional flux density and stress. 

II. METHODS 

The flux density vector B and the total strain tensor ε are 
chosen as the independent variables, as functions of which the 
magnetization M and the total stress σ are to be derived. 
Following [2], a Helmholtz free energy density ψ(I1, I2, I4, I5, 
I6) is first expressed analytically as a function of the following 
five invariants: 
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The single-valued (SV) magnetization and the 
magnetostrictive stress are then calculated as partial 
derivatives of the Helmholtz energy density: 
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The magnetic field strength is 0 H B M , and the total 
stress σ = σme + σmag also includes the purely electromagnetic 
contribution from the Maxwell stress tensor 
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in which ν0 = 1/μ0 is the reluctivity of free space. 
The hysteretic behavior is modeled following the 2-D 

vector J-A hysteresis model comprehensively described in [7]. 
The magnetomechanical coupling is introduced in the model 
by iterating the anhysteretic magnetization Man for a given 
effective field strength Heff from the SV model (2) as 

   an 0 eff an , M M H M ε . (5) 

The effect of stress on the coercive field strength is modeled 
by introducing stress-induced anisotropy to the J-A model 
pinning parameter k [7]. Instead of a scalar k, we use a 
diagonal tensor in the principal stress coordinates assuming 
that the diagonal terms depend only on the corresponding 
principal stresses σ1 and σ2. A second-order Taylor expansion 
around zero stress gives 
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in which k0, a and b are fitting parameters and I is the unit 
tensor. The derivative of the irreversible magnetization Mirr 
with respect to the effective field strength is calculated by 
transforming the k12 tensor from the principal coordinates to 
the global xy-coordinate system as 
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in which the coordinate transformation matrix R and the first 
principal axis angle  are 
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Fig. 1. Fitting the parameters of the single-valued model to H-averaged B-H 
curve measurements at different stresses. 

III. RESULTS AND DISCUSSION 

Initial fitting results to unidirectional magnetization curve 
measurements under parallel uniaxial stresses are presented 
here. The magnetization curves have been measured for 0.5-
mm nonoriented Fe-Si sheets under nine different stresses σL 
ranging from 50 MPa compression (–) to 80 MPa tension (+). 
Fig. 1 shows results for fitting the SV model parameters [2] to 
the H-averaged magnetization loops at four different stress 
values. For a given load σL and flux density B, the total strain 
 has been iterated from  

   L,  σ B ε σ 0 . (9) 

It is emphasized that despite the unidirectional flux density 
and stress, using the vector model is essential since the 
perpendicular components of  also become nonzero. The 
model fits reasonably well and is able to predict the quadratic 
dependency of the magnetization curves on the stress, so that 
both compression and high tension reduce the permeability 
from the zero-stress case. This effect is not observed with the 
energy definitions of [3] and [6]. 

Fig. 2 shows the results of fitting the J-A model parameters 
c and α [7], as well as the pinning tensor (6) to measured 
hysteresis loops and losses at the same four stresses. Both the 
loop shapes and the coercive fields are reasonably modeled. 
Finally, a good correspondence is observed in Fig. 3 between 
the measured and modeled hysteresis losses also at the other 
five stress values used in the measurements. 

The initial results from the proposed model seem promising 
for predicting magnetization curves and hysteresis losses in 
mechanically loaded laminations. Choosing the flux density 
and total strain as the variables allows straightforward 
implementation of the model in FE formulations for the 
magnetic vector potential and mechanical displacement. In the 
full paper, we plan to study the properties of the model with 
both biaxial stresses and rotational flux densities. The chosen 
expression for the Helmholtz free energy will also be 
discussed in more details. 
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Fig. 2. Fitting the hysteresis model parameters to the B-H curve measurements 
at different stresses 
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Fig. 3. Comparison of modeled and measured static hysteresis losses at 
different stresses. 
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